
the mixture in the relaxation zone. The gas temperature increases more intensely due to brak- 
ing. The particles heat due to heat exchange with the continuous phase, remaining colder 
than the gas. Increase in the relaxation time ~l naturally leads to freezing of the heat 
exchange process. At ~i - 0, the change in T, T 2 to their final value occurs in a boundary 
layer the length of which changes little after ~i < 0.01. 
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TIME-FREQUENCY CHARACTERISTICS OF AN ELASTIC WAVE 

]LEDIATED BY A CAMOUFLET EXPLOSION 

A. A. Zverev, E. E. Lovetskii, and V. S. Fetisov UDC 534.222 

One of the features of explosive action upon a medium is the radiation of elastic waves 
by the explosive source. This process is of interest, since the range of action of elastic 
waves on the medium significantly exceeds the dimensions of the destruction zone created by 
the explosion. Data concerning the explosion transferred by elastic waves can be received 
at large distances from the center. The carrier of these data is the elastic wave, the spec- 
trum of which is usually characterized by some fundamental frequency. The characteristic 
frequency is determined by the dimensions of the elastic wave source Re: ~0 = c~/Re, where c~ 
is the speed of sound in the perturbed medium. The spectral characteristics of the elastic 
wave contain information on the properties of the medium surrounding the change [i]. It is 
thus of interest to study the effect of medium parameters in the vicinity of the explosion 
on the frequency-time characteristics of the radiated wave, as well as upon the seismic effi- 
ciency of an underground explosion. 

We will consider the explosive process from the moment of shock wave formation. We as- 
sume that on the shock wave front the medium is compressed due to collapse of pores. The 
medium then breaks into particles and behind the front the medium expands due to the dilatance 
effect [2]. In this stage the velocity of the shock wave front or destruction wave exceeds 
~;he speed of propagation of longitudinal compression waves in the given medium. After the 
velocity of the front becomes equal to the velocity of longitudinal waves elastic waves be- 
gin to radiate from the destruction wave front, continuing after the latter halts. 

At the initial moment a shock wave breaks away from a spherical cavity of radius ao, 
filled by gas at a pressure of P0. The increase in density of the medium at the front is 
defined by the quantity [3] 
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e(R) = I -- 90/p(R) = eo(ao/R) ~, (1)  

where  R i s  t h e  r a d i u s  o f  t h e  shock  wave f r o n t ;  P0, i n i t i a l  d e n s i t y  o f  t h e  medium; p (R) ,  den-  
s i t y  on t h e  f r o n t .  S p e c i f y i n g  such  a dependence  o f  c o m p a c t i o n  on f r o n t  r a d i u s  s i m u l a t e s  a t -  
t e n u a t i o n  w i t h  d i s t a n c e  from t h e  c e n t e r  o f  t h e  e x p l o s i o n .  As w i l l  be shown below,  t h e  param- 
e t e r  X a f f e c t s  t h e  m e c h a n i c a l  a c t i o n  o f  t h e  e x p l o s i o n  and t h e  a m p l i t u d e  o f  t h e  r a d i a t e d  e l a s -  
t i c  wave s i g n i f i c a n t l y .  

The mo t ion  o f  t h e  medium beh ind  t h e  f r o n t  i s  d e s c r i b e d  by t h e  e q u a t i o n s  o f  m o t i o n ,  con-  
t i n u i t y ,  and d i l a t i o n :  

du Oar + 2 ar --  ar . ( 2 )  
P dt ----~'r r ' 

Op , [ Ou u)  
OtO--~P+u-~r t P ~ W - ~ - 2 7  =Q; (3) 

�9 )1 ~176  Ou 2 L = A ( O ' ~  - ~ r - - T  " o-7 + r 

Here u i s  t h e  mass v e l o c i t y  o f  t h e  medium; p, d e n s i t y ;  r ,  c o o r d i n a t e ;  t ,  t i m e ;  A, d i l a t i o n  
r a t e ,  which  in  s u b s e q u e n t  c a l c u l a t i o n s  w i l l  be assumed c o n s t a n t .  The r e l a t i o n s h i p  be tween  
t h e  components  o f  t h e  s t r e s s  t e n s o r  Or and ar i s  g i v e n  by t h e  P r a n d t l  e x p r e s s i o n  

o~ - % = k + s(% + 2%) ( 5 )  

where k and s are parameters. 

We write the conditions of conservation of mass and momentum on the shock wave front 
in the form 

u(R) = e(R)R, Or(R) = --o* --  Ooe(R)R~, ( 6 )  

where a ~ is the strength of the medium under decompression; the dot indicates differentiation 
with respect to time. 

In Lagrangian variables system (2)-(4) takes on the form 

Poro 2r~-20--'u-u--O-'~-[ra(~ -- Or o (7)  

2 
Or__ ~o 0o. (8) 

Or O r ~ P ' 

O " Z" 0 A -~- In (pr) + - ~ - l n  p = 0, (9) 

where ~ = 6s/(2s + I), p(r0, t) = -ar(r 0, t). Integrating Eq. (7), we obtain the camouflet 
equation describing propagation of the destruction wave and expansion of the explosion cavity. 

Such a solution is valid while the front velocity R exceeds the propagation rate of longi- 
tudinal perturbations in the given medium cs When l~ < cs a spherically symmetric region 
of elastic deformations is formed ahead of the destruction zone, the front of which moves 
at a velocity c~. The physical quantities in this region can be expressed in terms of the 

( /- reduced perturbation potential [4] ~(~--r) T_ t _ t P0 r= r : 
t o E o p-~ 

e ~p" t -- 2v ' cp =-- 2 ~ §  

pe.= O0 (t-3f-cp'/r), vu --~ c!(--~ -- -~- " ~ ) ,  w Y =  ao ( ~--/-'r ~- -~) .  

(io) 
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The superscript e here indicates that the given quantity refers to the elastic zone; Ph is the 
lithostatic pressure; v e is the mass velocity; w e are elastic perturbations. On the boundary 
between the destruction zone and elastic region the medium is acted on by a decompression 
ore(x - R(x)) = -o*. This gives an equation for the potential 

~,t g * - - P h  I--2~ (~' ~) (ii) 
R- Poq 2T~-~ 7+7" 

In the future all quantities having the dimensions of length will be dedimensionalized using 
the value a0 as a reference, stresses will be normalized to Po, velocities to /Po---/-Pa, and 
densities to P0. When the destruction wave is preceded by an elastic precursor, the condi- 
tions on the front, Eq. (6), have the form 

u - -  - -  �9 ( 1 2 )  

In  t h i s  c a s e  t h e  c a m o u f l e t  e q u a t i o n  o b t a i n e d  by i n t e g r a t i o n  o f  Eq. (7)  w i t h  bounda ry  c o n d i -  
t i o n s  (12)  can be w r i t t e n  as  

( ,~ 08) B = "~ e (R) -}- ~ Y --  nRne2X + ep e (R) R a-n ,  

[ n v 1 8 e ] Y - - 2 n R n v e ( i - - e )  X--2uelrlc~-n, 
C = v ( i - - e )  ~ v i - - e  OR 

D -- ~ (R a - -  xa)/R n - -  xaR-n(Sr (x) - -  r a - n ,  
- -  3 ~  

R R 

X = ~ r:r a - ' - ' n  (ro) dr O, Y = ; rXra-2-n (ro) dro , x =  a (~r(X>=w-P(X)" 
a 0 

1 1 

(13) 

The stress on the cavity wall Or(X) can be found from the condition of adiabatic expansion of 
the explosion gases 

pV~ = const, (14)  

where  p i s  t h e  gas  p r e s s u r e ,  Vc i s  t h e  c a v i t y  volume,  and y i s  t h e  a d i a b a t i c  i ndex .  S imul -  
t a n e o u s  n u m e r i c a l  s o l u t i o n  o f  Eqs.  (11)  and (13)  p r o v i d e s  a d e s c r i p t i o n  o f  t h e  mo t ion  of  t h e  
e l a s t i c  and d e s t r u c t i o n  waves .  

We will now turn to the results of the calculations. In the case of practical applica- 
tion of explosions the amount of explosive energy Eel transferred into the elastic region is 
of interest. 

In Fig. i, 
plosion energy), 
finity 6rad(T). 

curve i shows the time dependence of the quantity Eel/(E0/t0) (E 0 is the ex- 
curve 2 is the time dependence of the elastic energy radiation rate at in- 
In the notation being used we have 

The radiant energy radiation rate [5] 

(15) 
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�9 d 4~P~ ~ [qg" 
~ad = ~ l--~--~ o J (~)12d= " (16) 

It is evident from Fig. i that each curve has a maximum, although the maximum occurs at 
different times. Since the elastic wave is radiated from the front of the destruction zone, 
it is logical to identify the dimensions of the elastic wave source with the dimensions of 
the destruction zone when the rate of energy radiation into the elastic region Eel or the 
rate of elastic radiation energy at infinity erad reaches its maximum. By the first criterion 
the radius of the elastic wave radiator Rel is equal to 42.40; by the second, 45.7ao. Since 
the maximum radius of the destruction zone for the given calculation is 46.2ao, it is evident 
that in the majority of cases one may take the radius of the elastic radiator equal to the 
final dimensions of the destruction zone. 

We will now determine the dependence of the elastic radius of the seismic radiator upon 
parameters of the medium. To separate the effect of one or the other parameter on Rel all 
other parameters are held constant in the corresponding calculations. The majority of the 
calculations employed the following physical quantity values: P0 = 0.7"10s kPa, ao = 3 m, 

= 1.4, s = 0.i, k = -104 kPa, Ps = 2.63 g/cm 3 (Ps is the density of the solid phase of the 
medium). 

A study was made of the dependence of elastic wave radiator radius on porosity of the 
medium. Porosity is one of the factors which has the greatest effect on both source dimen- 
sions and the amount of elastic energy radiated. With increase in porosity of the medium 
from i to 25%, the radiator radius decreases from 75ao to 15ao; i.e., by a factor of five 
times. Such a result is understandable if we consider that with increase in porosity the 
energy dissipated in the shock front increases. This leads to a decrease in dimensions of 
the destruction zone and the elastic radius. The effect is most significant at low porosity 
values (from i to 5%). 

In the calculations it was assumed that compaction in the destruction wave front e(R) 
is constant, i.e., the parameter I in (i) is equal to zero. If X > 0, then compaction on the front 
decreases with distance from the center of the explosion by a power law, Eq. (i). The char- 
acter of the function Rel(%) (Fig. 2) can be explained analogously to that of the function 
Rel(m0). When compaction on the destruction wave front decreases with radius, the total vol- 
ume of collapsed pores decreases significantly. The energy dissipated in collapsing these 
pores then decreases greatly, which leads to an increase in the dimensions of the elastic 
source and a decrease in the characteristic frequency of the seismic signal. In this sense 
an explosion in a porous medium with varying compaction is equivalent to an explosion in a 
low porosity medium with constant compaction on the shock wave front. 

It is evident from Eqs. (I0) and (Ii) that the reduced perturbation potential~(~) and 
its derivatives are proportional to the strength of the medium under decompression o*. It 
follows from this that the values of stress, velocity, displacement, and density in the elas- 
tic wave are also proportional to o*. Figure 3 shows a graph of elastic displacement at 
the boundary of the destruction zone as a function of strength of the medium, calculated for 
the moment at which motion of the cavity and destruction wave front end. With increase in 
strength of the medium the elastic perturbations increase intensely. 

Strength of the medium affects the dimensions of the elastic wave radiator differently. 
With increase in strength the resistance of the medium to shock destruction increases. As 
a result the dimensions of the destruction zone decrease and, consequently, the radius of 
the elastic source also decreases. The function Rel(O*) is shown in Fig. 4. With increase 
in o* from 0.3"102 to 1.5"102 MPa the value of the elastic radius decreases 1.5 times. The 
calculations were performed for m 0 = 0.05, X = I, A = 0.07, P0 = 2.5 g/cm s. This feature 
of the dependence of elastic radiator radius on strength of the medium also manifests itself 
in a change in the spectral characteristics of the source. We will use the Fourier transform 
of the reduced velocity potential ~ '(w) to characterize the spectrum. The function ~ '(m) 
can be used to define the spectral composition of any physical quantity in the elastic wave. 
To find ~'(m) we solve the problem of explosion with radiation of an elastic wave. After 
the destruction wave halts, the solution of the Sharpe problem [6] is constructed for radia- 
tion of waves by a loaded sphere, upon which a constant pressure p = -~*: 
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-Rm po4 t - ( q s ~ n ' ~ + C ~ o ~ ) o  . 

"l/"~'~-~2v c t 
Here Rm is the maximum radius of the destruction zone, ~ = 1 - -  v R m'  C I and C a are con- 

stants. After taking the Fourier transforms of the potentials thus determined, curves 1-5 
of Fig. 5 were obtained, corresponding to strengths o* = 30, 70, i!0, 150, and 190 MPa. It 
:is evident that with increase in strength the maximum of the spectrum shifts toward higher 

frequencies and corresponds approximately to a frequency ~_ ~/{--2V ct" i--v Rm' close to the charac- 

teristic frequency of the problem m0 = cs With increase in strength Rm decreases (see 
Fig. 4), which leads to an increase in the characteristic frequency of the elastic signal. 

The amplitude ~' (~) is proportional to R3m P0C~. Despite the fact that, in accordance with 

Fig. 4, the quantity Rm decreases with strength, growth in a* dominates over the decrease in 

(I* 
Rm3(a *) As a result, the spectral amplitude of the reduced velocity potential s-- in- 

. B m PoC~ 
creases with increase in strength of the medium for all values of o*. The amplitude of the 
elastic displacement potential decreases with increase in the strength of the medium, since 
the latter leads to an abrupt decrease in shock wave amplitude and, consequently, decrease 
in amplitude of the elastic wave generated by the latter. 

As is known from experiment [7, 8], at a certain stage in the explosion breakthrough 
of gases from the explosion cavity into the pore space of the medium destroyed by the shock 
wave is possible. It is obvious that this phenomenon should lead to a decrease in the me- 
chanical effect of theexplosion. In analogy to [3], in the present study an approximate 
estimate was made of the effect of gas escape from the explosion cavity upon the explosion 
]process. In other words, it was assumed that during the cavity expansion stage the gases 
instantaneously fill the entire volume of pores and cracks in the destruction zone. Change 
:in strength of the medium upon filling of the pores by gas was neglected. The condition de- 
scribing expansion of the explosion gases, Eq. (14), now takes on the form 

p ( ~  + V') v = const, ( 1 7 )  

where V' is the total pore volume in the destruction zone, composed of pores compressed in 
the shock wave front and cavities created by dilation of the medium. Calculations show that 
this volume, normalized to the initial volume of the explosion cavity, V'(T) = m0(R3(~) - 
i) - (x3(T) - i). It is evident from calculations performed with boundary conditions on the 
cavity walls in the form of Eq. (17) that consideration of gas escape from the cavity leads 
to a significant reduction in the dimensions of the elastic radiator. For a medium porosity 
of the order of 15%, the elastic radius decreases by a factor of two, while for m 0 = 2% it 
decreases by 2.8 times, which explains the more significant cavity expansion and decreases 
:in gas pressure in a highly porous medium. In this case the change in pressure within the 
cavity has little effect on development of the explosion. Moreover, consideration of gas 
departure from the cavity leads to a significant reduction in elastic wave energy and elas- 
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tic energy radiated at infinity. However, for real subterranean explosions, gas break- 
throughcan occur only in the final stage of the explosion with the gases filling the en- 
tire volume of pore space, so that these numbers are in fact somewhat lower. For low power 
explosions communication between the explosion cavity and the pore space is of little import. 

The total elastic energy and the elastic energy radiated at infinity can be determined 
by integration over time of the quantities defined by Eqs. (15) and (16). Figure 6 shows 
Eel(o*) (curve i) and erad(o*) (curve 2). Both quantities are expressed as percentages of 
the total explosion energy, i.e., curve 2 corresponds to the seismic efficiency of the elastic 
source. When o* = 30 MPa the radiated elastic energy comprises 32% of the total elastic wave 
energy. With increase in o* it increases, and at o* = 190 MPa, 52.5% of the elastic energy 
is radiated at infinity. 

Thus, the dimensions of the elastic wave radiator coincide with the maximum radius of 
the destruction region. This value determines the characteristic frequency of the elastic 
wave at distances from the explosion center such that change in spectral composition due to 
wave attenuation still has no effect. The characteristic frequency of the elastic signal 
depends most significantly on the strength and initial porosity of the medium. Moreover, 
the character of medium compaction in the shock wave front affects the dimensions of the seis- 
mic radiator strongly. The elastic wave energy, as well as the elastic energy radiated at 
infinity, are determined mainly by the porosity and strength of the medium under decompression. 
For a more accurate evaluation of the radiated elastic energy it is necessary to consider 
escape of explosion gases from the cavity as it expands. 

The authors express their gratitude to V. K. Sirotkin for his valuable remarks and dis- 
cussion. 
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